
SoftRelTools Manual

James Amundson
Computing Division

Fermi National Accelerator Laboratory

Manual Version 1.02
December 14, 1999

1

Contents
1 Introduction 4

2 SoftRelTools for users 6
2.1 Introduction . 6
2.2 Details . 7

3 SoftRelTools for librarians 7
3.1 Installing SoftRelTools . 7
3.2 Setting project preferences . 9
3.3 The project-specific package . 9
3.4 The site-specific package . 10

4 The inheritance hierarchy 10
4.1 Introduction . 10
4.2 Details . 11

4.2.1 Makefile fragments . 11
4.2.2 Scripts . 11
4.2.3 Examples . 11

5 The environment variables 12
5.1 srt_setup and srt_environment 12
5.2 System defaults . 14
5.3 User defaults . 14

6 The code management system 14
6.1 Introduction . 14
6.2 System preferences for newrel 15
6.3 User preferences for newrel . 15

7 The build system 15
7.1 Exported headers . 16
7.2 Subdirectories and Subpackages 16

7.2.1 Preferences for Subdirectories and Subpackages 17
7.3 Libraries . 17

7.3.1 Preferences for Libraries 17
7.4 Binaries and Test Binaries . 18

7.4.1 Scripts . 18

2

7.4.2 Simple binaries . 18
7.4.3 Complex binaries . 18
7.4.4 Link libraries for simple and complex binaries 19
7.4.5 Rules for test binaries . 19
7.4.6 Preferences for binaries 19

7.5 Standalone objects . 19
7.6 Man pages . 20
7.7 Documentation files . 20
7.8 Generated include files . 20
7.9 Generated code . 20
7.10 SoftRelTools version . 20
7.11 Building with qualifiers . 21

7.11.1 Examples . 21
7.12 Debugging . 22

7.12.1 VERBOSE flag . 22
7.12.2 echo_* . 22
7.12.3 sortecho_* . 22
7.12.4 gmake –debug . 22

7.13 Example packages . 22

8 The external package system 23
8.1 Standard compilers and linkers: arch_spec.mk 23

8.1.1 Internal structure of arch_spec.mk 23
8.1.2 Macros defined by arch_spec.mk 23
8.1.3 Qualifiers in arch_spec.mk 23

8.2 External libraries, etc.: arch_spec_*.mk 24

9 Availability 25

3

About this manual
This manual describes SoftRelTools version 2. It is intended to augment the doc-
umentation in “A UNIX Based Software Management System,” edited by Robert
Harris, Computing Division Note: GU0013, which provides a more general intro-
duction to SoftRelTools. It is available at

<http://www-
cdf.fnal.gov/offline/code_management/run2_cmgt/run2_cmgt.html>.

Manual Changelog
v1.01 April 28, 1999: Inital public version.

v1.02 December 14, 1999: Updated name of cvs repository.

1 Introduction
The primary purpose of SoftRelTools version 2 is to provide a backward-compatible
replacement for the original SoftRelTools written by Bob Jacobsen. SoftRelTools
is designed to be easier to use and to maintain than the original SoftRelTools. Ease
of use and maintainability are enhanced by increased functionality and modular
structure. Maintainability is further enhanced by the seperation of the basic tool
from project and site specific settings through an inheritance heierarchy.

The modules and their relationships are described by the following figure:

4

SoftRelTools

External Package Interface
arch_spec.mk
arch_spec_*.mk
etc.

Build
GNUmakefiles
standard.mk
etc.

Code Management
newrel
addpkg
etc.

environment variables

environment variables

srt_int_querypkg

en
vir

on
men

t v
ar

iab
les

The inheritance heierarchy from base to project and site-specific settings is
orthogonal to the separation of the tool into modules. In the figure below, each
pane represents the collection of modules shown in the figure above.

Base Project
specific

Site
specific

Precedence

The SoftRelTools base is largely self-contained. The project and site specific
behavior is implemented through optional additional packages, SRT_$PROJECT
and SRT_SITE.

5

2 SoftRelTools for users

2.1 Introduction
All of the publicly available SoftRelTools files live in a distribution directory. For
the purposes of the manual we we refer to this directory as $SRT_DIST. In order
to use SoftRelTools, users must have sourced the file $SRT_DIST/srt/srt.csh or
$SRT_DIST/srt/srt.sh, depending on the users’ shell. Of course, this assumes that
a SoftRelTools distribution in $SRT_DIST has been installed. (See SoftRelTools
for librarians.) After srt.(c)sh has been sourced, the command “srt_setup” will set
up SoftRelTools for use. srt_setup is described in the srt_setup man page and in
the section on the SoftRelTools environment.

The following example shows how a user can work with a package “Hello”
that is part of a release “development”. It assumes that SRT has been set up.

1. Create a test release called “myrelease”

newrel --test development myrelease
cd myrelease

2. Add the Hello package to “myrelease”

addpkg Hello

3. Set the local context, i.e., tell SRT to work with the current release. This is
optional, but it speeds compilation.

srt_setup -a

4. Build all packages in the release

gmake

5. Here is a transcript of the steps above on my machine:

> newrel --test development myrelease
read user srtrc
Creating a test release "myrelease" in the directory

/home/amundson/work
Linking tmp to /tmp/myrelease/tmp

6

Linking bin to /tmp/myrelease/bin
Linking lib to /tmp/myrelease/lib
> cd myrelease/
> addpkg Hello
Release development uses Hello ver-
sion HEAD, will check that out
Adding package "Hello" to ".".
cvs checkout: Updating Hello
U Hello/GNUmakefile
U Hello/Hello.cc
U Hello/Hello.h
U Hello/HelloExample.cc
> srt_setup -a
> gmake
<**include**>
<**include**> Hello
<**lib**>
<**lib**> Hello
<**compiling**> Hello.cc
<**building library**> libHello
<**bin**>
<**bin**> Hello
<**compiling**> HelloExample.cc
<**building**> HelloExample
>

The lines “read user srtrc” and “Linking... to ...” after newrel are a result of my
˜/.srtrc file. See the section on user preferences for the code management system.

2.2 Details
To learn more about the commands newrel, addpkg, etc., read the section on the
code management system. To learn more about building your own packages, read
the section on the build system.

3 SoftRelTools for librarians

3.1 Installing SoftRelTools
(The following information is duplicated in the file README.install in the Soft-
RelTools/install directory.)

This version of SoftRelTools needs two things to get started:

7

1. A working boot release.

2. A properly installed srt directory in the main release area.

Once these two things are in place, users must

1. Source the $SRT_DIST/srt/srt.(c)sh file appropriate for their shells.

2. Execute "srt_setup".

Instructions for creating the boot release and srt directory follow:

To create a completely new SoftRelTools distribution:

1. Get srt_distribution.tar and untar it. (srt_distribution.tar is distributed sepa-
rately.)

2. You now have a directory called srt_distribution. Move/rename it to what-
ever youwant, but the instructionswill refer to this directory as srt_distribution.

3. cd to srt_distribution/srt directory.

4. Execute the install script with "./install -p <your project>". You can see the
options to install with "./install –help". The install script writes the location
of the srt directory to the srt.(c)sh files. If you move the distribution, you
will have to run install again. The project and cvsroot files can be modified
by hand if you wish.

To update an old SoftRelTools distribution to work with the new SoftRel-
Tools:

1. Untar the file boot_release.tar from this directory in your distribution "re-
leases" directory.

2. Copy the srt directory from this directory to the distribution directory (the
directory the old SoftRelTools called $BFDIST.)

3. cd to the new srt directory

4. See step 4above.

8

3.2 Setting project preferences
There are several new files that can hold settings that apply to all users.

$SRT_DIST/srt/cvsroot holds the default value of CVSROOT for the distribu-
tion. It can be overridden for each package; see below. The contents of this
file can be set by the install script or by hand.

$SRT_DIST/srt/project holds the name of the project. It corresponds to the
EXPERIMENT variable in the old SRT. There can be only one project per
distribution. The contents of this file can be set by the install script or by
hand.

$SRT_DIST/srt/srt.csh is the file to be sources by csh and tcsh users. Only one
line of it should ever be modified. The install script modifies it for you.

$SRT_DIST/srt/srt.sh the file to be sources by ksh, zsh and bash users. Only
one line of it should ever be modified. The install script modifies it for you.

$SRT_DIST/srt/srt_envrc contains default environment variable settings. See
the section on environment variables.

$SRT_DIST/srt/srtrc contains default system settings for directory creation/linking
in newrel. See the section on code management.

$SRT_DIST/packages/<package>/cvsroot is an optional file for each package.
If it exists, addpkg will automatically use it to determine the value of CVS-
ROOT for <package>. This file will be written automatically if newpkg is
called with the -d <cvsroot> argument. It can also me modified by hand.

3.3 The project-specific package
SoftRelTools will look for the package SRT_$SRT_PROJECT (i.e., SRT_D0,
SRT_CDF, etc.). This package can be used to augment and/or replace behav-
ior of the central SoftRelTools. The mechanism for this is described in the section
on the inheritance hierarchy.

9

3.4 The site-specific package
The package SRT_SITE (note the fixed name) is similar to the project-specific
package. It is only intended for situations where two different machines for the
same project need to behave differently. Its behavior supersedes both the default
behavior and the project-specific behavior.

4 The inheritance hierarchy

4.1 Introduction
The version of SoftRelTools at Fermilab is modified frequently – on the order
of once per day. These changes fall into two categories: 1) Bug fixes. 2) Local
changes in settings, etc. The goal of the inheritance hierarchy in SoftRelTools is to
allow projects to be able to make both kinds of changes quickly, without having to
worry about affecting other projects. Changes of the first type can be incorporated
into the base package in a controlled manner. Changes of the second type can stay
with the projects, where they belong.

As the term implies, the inheritance hierarchy is based on the concepts of
object-oriented design. Think of the site-specific parts of SoftRelTools inheriting
from the project-specific parts, which inherit from the base. However, SoftRel-
Tools is implemented in primarily in GNU Make and Bourne Shell – neither of
which are very well-suited to object-oriented programming. “Inheritance” in Soft-
RelTools should really be considered an analogy. The analogy will break down if
pushed too far.

All of the modules in SoftRelTools can be modified first at the project level
then the site level. The site has the final word. There are two mechanisms avail-
able:

1. All the modules of SoftRelTools look in the “special” subdirectory of the
project and site packages. If a file corresponding to the current file exists
in the “special” directory it is sourced. The specialization files are included
in addition to the original file, the purpose being to augment or modify the
behavior of the base package. This is the preferred method of incorporating
changes.

2. The include paths in SoftRelTools also look in the project and site packages.
This allows replacement of the SoftRelTools base files. The replacement

10

method should only be used if the override method is unsuitable. It is con-
sidered a goal that replacement does not need to be used. Replacement files
go in the “SoftRelTools” subdirectory of the project and site packages.

4.2 Details
4.2.1 Makefile fragments

All makefile fragments in SoftRelTools/include look for the a corresponding file
in SRT_$SRT_PROJECT/special. Files in subdirectories of SoftRelTools/include
go into the corresponding subdirectories of SRT_$SRT_PROJECT/special. A few
special files can be specialized both at the beginning and the end:

standard.mk looks for pre_standard.mk and post_standard.mk.

GNUmakefile.main looks for pre_GNUmakefile.main and post_GNUmakefile.main.

All other files look for files of the same name as themselves.

4.2.2 Scripts

All of the scripts in SoftRelTools consist of a set of subroutines, including one
called “main”. If specialization files are found in the “scripts” subdirectory of the
project-specific package, they are sourced before any of the subroutines are called.
The specialization files can contain replacements for old subroutines and/or new
subroutines.

4.2.3 Examples

Add a new target to standard.mk

– put the lines

foo:
echo “bar”

in special/post_standard.mk in the project-specific package. Now “gmake
foo” will return “bar”.

Add the –no_exceptions flag to the C++ compiler flags for the Kai compiler:

11

– put the line

override CXXFLAGS += --no_exceptions

in the special/compilers/KCC.mk in the project-specific package.

Provide additional actions for addpkg

– put the lines

extra_actions () {
echo "Now executing top secret ex-

tra actions"
}

main () {
script_defaults
process_args $*
actions
ods_actions

}

in scripts/addpkg in the project-specific package. Now addpkg will print
an extra message every time it is called. Notice that this example required
both providing a new subroutine, extra_actions, and a replacing an existing
routine, main.

5 The environment variables

5.1 srt_setup and srt_environment
SoftRelTools includes two commands, srt_setup and srt_environment, for exam-
ining and manipulating the user environmental variables. The former is actu-
ally an alias that calls the latter with certain options. The default behavior for
srt_environment is to print the current settings. Sample output is below.

SRT settings:
Variables for backward compatibility:
BFARCH = Linux2-KCC_3_3

12

BFDIST = /home/amundson/work/dist
BFCURRENT = development

Automatic and derived variables:
PATH = /home/amundson/work/myrelease/bin/Linux2-
KCC_3_3:/home/amundson/work/dist
/releases/development/bin/Linux2-
KCC_3_3:/fnal/ups/prd/kai/v3_3f_1/Linux+2/KCC_B
ASE/bin:/home/amundson/work/dist/releases/boot/bin/generic:/opt/kde/bin:/fnal/up
s/prd/ups/v4_3/Linux+2/bin:/opt/kde/bin:/home/amundson/work/dist/releases/boot/b
in/generic:/home/amundson/bin:/usr/sbin:/bin:/usr/bin:/etc:/usr/etc:/usr/bin/X1
:/usr/local/bin:.:/home/t1/amundson/bin:/home/t1/amundson/bin
LD_LIBRARY_PATH = /home/amundson/work/myrelease/lib/Linux2-
KCC_3_3:/home/amundso
n/work/dist/releases/development/lib/Linux2-KCC_3_3:
SRT_PRIVATE_CONTEXT = /home/amundson/work/myrelease
SRT_PUBLIC_CONTEXT = /home/amundson/work/dist/releases/development
MAKEFILES = "SoftRelTools/preamble.mk"
MAKEFLAGS = "-r -
I/home/amundson/work/myrelease/SRT_ODS -
I/home/amundson/work/di
st/releases/development/SRT_ODS -
I/home/amundson/work/myrelease/include -I/home/
amundson/work/dist/releases/development/include"
CVSROOT = /home/amundson/repository
SRT_SUBDIR = Linux2-KCC_3_3
SRT_PROJECT = ODS
SRT_ARCH = Linux2
SRT_ENV_SET = yes

User settable variables:
SRT_LOCAL = /home/amundson/work/myrelease
SRT_DIST = /home/amundson/work/dist
SRT_BASE_RELEASE = development
SRT_CXX = KCC_3_3
SRT_QUAL = default

The most important changes from the original SoftRelTools settings are the re-
placement of SRT_ for BF as the variable prefix and the splitting of the BFARCH
architecture-C++ compiler combination into SRT_ARCH and SRT_CPP, respec-
tively. SoftRelTools currently maintains the appropriate values of the BF vari-
ables, but it does not use them internally

The first time srt_setup is called, variables are set to their default settings,
SRT_CXX=$DEFAULT_SRT_CXX, etc. The defaults can be restored later by

13

“srt_setup -d”.
Users can alter the values of variables by putting one or more assignments on

the command line

srt_setup SRT_CXX=EGCS_1_1
srt_setup SRT_QUAL=maxopt SRT_BASE_RELEASE=test

5.2 System defaults
srt_setup and srt_environment source the file $SRT_DIST/srt/srt_envrc. This al-
lows the librarian to set defaults for an entire project. For example, the srt_envrc
might contain the lines

DEFAULT_SRT_CXX=KCC_3_3
DEFAULT_SRT_BASE_RELEASE=development
Since the file is sourced by the shell script, it can contain any shell commands.

Only the resulting value of the variables matter.

5.3 User defaults
srt_setup and srt_environment also source the file $HOME/.srt_envrc. (Note the
presence of a leading dot in the user file, but not in the system file.) This allows
the user to set his/her own defaults. Again, the file is sourced by the shell script,
so it can contain any shell commands.

6 The code management system

6.1 Introduction
The scripts for the code management system are described by the man pages.
Additionally, every script will describe its own actions and options when invoked
with “–help” or an argument it does not understand. The “newrel” command looks
for system and user preferences.

Scripts with the prefix “srt_int” are used internally by SoftRelTools. They will
not generally be useful to users. Note that the srt_int_querypkg script is techni-
cally part of the build system, not the code management system. That means that
changes to the build system can affect srt_int_querypkg. The code management
scripts are designed to be independent of the build system.

14

6.2 System preferences for newrel
newrel sources the file $SRT_DIST/srt/srtrc for directory creation preferences. If
the variable “extra_dirs” is defined, it is merged with the list of directories to be
created. It should be in the form of a space-separated list of directory names.
extra_dirs has two purposes:

1. Extra directories can be created.

2. Directories can be made into links to other areas. The syntax for this is
“foo>/tmp/bar”, which means that the directory foo will be made into a link
to /tmp/bar. If /tmp/bar does not exist, newrel will (attempt to) create it.

As in other places, srtrc is really a script which is sourced, so shell logic can be
used. All that matters is the final value of extra_dirs. If “extra_dirs” is not defined,
newrel looks for “stddirs” for backward compatibility with the old SoftRelTools.

The variable “release” (the name of the new release) is guaranteed to be avail-
able when srtrc is sourced.

6.3 User preferences for newrel
newrel also sources the file $HOME/.srtrc (note the leading dot) for directory
creation preferences. See above for details. The following example .srtrc file is
useful:

extra_dirs=\
"$extra_dirs tmp>/tmp/$release/tmp bin>/tmp/$release/bin lib>/tmp/$release/lib

It redirects all the directories containing large binary files to /tmp in such a way
as not to interfere with other releases. Adding to the previous value of $extra_dirs
makes certain that system-level defaults are also respected.

7 The build system
Introduction

The build system in SoftRelTools is based on GNUMake. Make is a very flex-
ible tool with a steep learning curve. SoftRelTools allows users to build and install
a variety of objects without learning the intricacies of Make. At the same time, the

15

power of Make is available for users who need to go beyond simple functional-
ity. SoftRelTools provides a method to build libraries, binaries, standalone object
files, man pages and documentation files. It also provides a method for packages
to use multiple subdirectories and subpackages. Packages make their header files
available to other packages through a configurable directory.

In order to use the SoftRelTools build system, the user must create a GNU-
makefile. The GNUmakefile must at least include the line

include SoftRelTools/standard.mk

at the end of the file.

7.1 Exported headers
All of the header files that are to be made available to other packages need to
be placed in one subdirectory. The subdirectory may be the main package di-
rectory. SoftRelTools will use the subdirectory indicated by the variable PACK-
AGE_INCLUDE. If PACKAGE_INCLUDE is not found, SoftRelTools will look
for a subdirectory with the same name as the package directory. If that fails, it
will then look for subdirectories named include, then src, in that order. As a last
resort, it will use the package directory itself as the header directory.

Exported headers can be used as follows

#include <Package/Header.hh>

where Package is any package in the SoftRelTools distribution, including the cur-
rent package. SoftRelTools sets the include paths accordingly.

7.2 Subdirectories and Subpackages
Packages can use an arbitrary hierarchy of subdirectories. SoftRelTools will at-
tempt to launch builds in the subdirectories listed in the variable SUBDIRS. Soft-
RelTools will only launch make in directories containing a GNUmakefile. All
subdirectories put their intermediate build products (object files, dependency files,
etc.) in the same temporary directory.

Subpackages are very similar to subdirectories. A subpackage is distinguished
by setting the variable SUBPACKAGE to the subpackage name. Each subdirec-
tory of the subpackage must define SUBPACKAGE. Subpackages have their own
temporary areas. Packages can have a mixture of subdirectories and subpackages,
but this is not necessarily encouraged.

16

7.2.1 Preferences for Subdirectories and Subpackages

If the variable “SORT_SUBDIRS” is set, subdirectories are built in alphabetical
order. Otherwise they are built in the given order.

7.3 Libraries
SoftRelTools can build static and shared libraries. To build the library libFoo,
include the line

LIB=libFoo.a
libFoo will be static, shared or both, if the variable LIB_TYPE is “static”,

“shared”, or “both”, respectively. (“Both” means generating two libraries, e.g.,
libFoo.a and libFoo.so.) The default is to create static libraries. The suffix on the
filename is irrelevant – SoftRelTools will give the library the appropriate suffix
depending on library type and platform. Static and shared libraries can also be
built by setting the variables SHAREDLIB and STATICLIB, respectively. The
value of LIB_TYPE is ignored for SHAREDLIB and STATICLIB.

The contents of the created libraries are defined by the following variables:

LIBCCFILES C++ files with the suffix .cc.

LIBCXXFILES C++ files with the suffix .cxx.

LIBCPPFILES C++ files with the suffix .cpp.

LIBCFILES C files with the suffix .c.

LIBFFILES Fortran files with suffixes .f or .F. The latter will be run through the
C preprocessor before compiling.

LIBLIBS The contents of LIBLIBS are added to the end of the link line when
the libraries are linked. They are not included in the dependencies.

7.3.1 Preferences for Libraries

As described above, libraries specified by the LIB variable will be built static,
shared, or both depending on the value of the LIB_TYPE variable. The library
rules in the old SoftRelTools included all the object files found in the library tem-
porary directory into the library. It is preferable to link exactly those objects re-
quested, however many packages rely on the old behavior. SoftRelTools will use

17

the old behavior (all objects in the directory) if the variable CATCHALL_LIBS is
set. Otherwise, it will only link the requested objects.

7.4 Binaries and Test Binaries
SoftRelTools will attempt to build all files listed in the BIN variable during the
bin stage. SoftRelTools will attempt to build all files listed in the TBIN variable
during the tbin stage. The tbin stage is not normally built by “gmake all”; it must
be invoked explicitly.

SoftRelTools provides rules for generating three different kinds of “binary”
files.

7.4.1 Scripts

Files listed in the SCRIPTS variable are assumed to be scripts. They are copied
into the binary destination directory and made executable. Note that normal usage
requires listing the script in the BIN variable (to tell SoftRelTools that it needs to
be built during the bin stage) and the SCRIPT variable (to tell SoftRelTools how
to build it.) A single directory can build an arbitrary number of scripts.

7.4.2 Simple binaries

Each file listed in the SIMPLEBINS variable is built into a single binary of the
same name. It looks for a single source file with the given name and a suffix .cc,
.cpp, .cxx, .c or .f. They will each be linked with BINLIBS, described below. A
single directory can build and arbitrary number of simple binaries. Note, however,
that all simple binaries in a package are built in the same temporary directory. As
with the other binary types, normal usage requires listing simple binaries in both
the BIN variable and the SIMPLEBINS variable.

7.4.3 Complex binaries

A subdirectory may specify in COMPLEXBIN one complex binary to be built.
The following contents may be specified:

BINCCFILES C++ files with the suffix .cc.

BINCXXFILES C++ files with the suffix .cxx.

18

BINCPPFILES C++ files with the suffix .cpp.

BINCFILES C files with the suffix .c.

BINFFILES Fortran files with suffixes .f or .F. The latter will be run through the
C preprocessor before compiling.

BINSTANDALONEOFILES Stand-alone object files to be linked with the bi-
nary.

The binary will be linked with BINLIBS, described below. Each complex binary
has a unique temporary directory. As with the other binary types, normal usage
requires listing simple binaries in both the BIN variable and the COMPLEXBIN
variable.

7.4.4 Link libraries for simple and complex binaries

All binaries in a directory will be linked with the contents of BINLIBS. (Note that
specifying extra libraries at link time is not usually a problem.) Local libraries
should be listed as dependencies of the files that use them. Local libraries mean
libraries built by SoftRelTools. External libraries, however, should not normally
be listed as dependencies. A change in external libraries should be followed by a
clean build. SoftRelTools places the contents of BINLIBS on the binary depen-
dency line, but with the contents of NODEP_LIBS filtered out. Having libraries
listed in NODEP_LIBS that are not in BINLIBS is perfectly acceptable. For back-
ward compatability, if BINLIBS is empty, LOADLIBES is used instead.

7.4.5 Rules for test binaries

All of the rules for for binaries apply to test binaries, also.

7.4.6 Preferences for binaries

If OLD_BIN_RULES is defined, SoftRelTools includes the binary rules from the
original SoftRelTools.

7.5 Standalone objects
Standalone objects are built directly in the library directory.

19

OBJCCFILES C++ files with the suffix .cc.

OBJCXXFILES C++ files with the suffix .cxx.

OBJCPPFILES C++ files with the suffix .cpp.

OBJCFILES C files with the suffix .c.

OBJFFILES Fortran files with suffixes .f or .F. The latter will be run through the
C preprocessor before compiling.

7.6 Man pages
Files listed in the MANPAGES variable will be installed during the bin stage.
foo.1 will be installed in man/man1, foo.2 will be installed in man/man2 directory,
etc.

7.7 Documentation files
Files listed in the DOCS variable will be installed into the doc directory during
the bin stage.

7.8 Generated include files
Files listed in the INC variable will be built during the include stage. SoftRelTools
does not provide the rules for building the files.

7.9 Generated code
Files listed in the CODEGENFILES variable will be built during the codegen files.
SoftRelTools does not provide rules for code generation by default, but rules can
be included by including the files SoftRelTools/idl.mk, SoftRelTools/java.mk and
SoftRelTools/yacc.mk.

7.10 SoftRelTools version
SoftRelTools version 2 defines

SRT_VERSION=2

in case a package needs to check to see whether the rewrite is available.

20

7.11 Building with qualifiers
Qualifiers are named sets of flags. The name is placed in the SRT_QUAL envi-
ronment variable. The value of SRT_QUAL passed to srt_setup determines which
set of qualifiers are being used for the other packages. The local package can be
built with any value of SRT_QUAL.

7.11.1 Examples

Building the hello package.

A standard build

> srt_setup
> srt_setup -a
> gmake
<**compiling**> Hello.cc
<**building library**> libHello
<**building**> HelloExample

A build using optimized settings

> srt_setup SRT_QUAL=maxopt
> gmake clean
> gmake
<**compiling**> Hello.cc
<**building library**> libHello
<**building**> HelloExample

Use default release, but optimize locally by passing a different value of
SRT_QUAL to gmake:

> srt_setup SRT_QUAL=default
> gmake clean
> gmake SRT_QUAL=maxopt
<**compiling**> Hello.cc
<**building library**> libHello
<**building**> HelloExample

Other combinations are possible. For example,a package that does not compile
properly under optimization can easily redefine SRT_QUAL in the GNUmakefile
itself, overriding other settings.

21

7.12 Debugging
SoftRelTools provides the following debugging aids:

7.12.1 VERBOSE flag

Normally, SoftRelTools executes its commands silently. If the variable VER-
BOSE is defined SoftRelTools will print each command before it is executed. The
value of VERBOSE is irrelevant; it only has to be non-null.

7.12.2 echo_*

Typing gmake echo_FOO will echo the value of the variable FOO at target execu-
tion time. It also prints the value of the make “origin” command for the variable
FOO. Obviously, it works for any variable.

7.12.3 sortecho_*

sortecho_FOO is similar to echo_FOO, but it sorts the contents of FOO and prints
them in a single column suitable for input to diff. It is useful for comparing the
values of complicated flags.

7.12.4 gmake –debug

This is really a function of make. The debug flag causes make to generate ex-
tremely verbose output. However, SoftRelTools works hard to minimize the ex-
traneous content of the output.

7.13 Example packages
Several example packages are available:

Hello builds a hello world library and a corresponding executable.

BinExamples builds all the available binary types. It depends on Hello.

UsesSubpackages uses both subpackages and and subdirectories.

TemplateArray is an example using C++ templates.

22

8 The external package system
The external package system breaks down into two parts: the interface to the
standard compilers and linkers and the interface to external libraries, etc.

8.1 Standard compilers and linkers: arch_spec.mk
The external interface to arch_spec.mk is essentially unchanged: the build system
includes arch_spec.mk, which sets a variables for the compilers, flags, etc. The
most important change is that SoftRelTools relies on the SRT_ variables as input
instead of the BF variables. The SoftRelTools variables have been maintained.

8.1.1 Internal structure of arch_spec.mk

The original SoftRelTools contained all settings for all architecture/compiler com-
binations in one file. This has been substantially rearranged in SoftRelTools ver-
sion 2. arch_spec.mk has been split into three: the main arch_spec.mk, the C++
compiler files and the platform files. The compiler and platform files live in the
compiler and platform subdirectories of the include directory of SoftRelTools.
Since some settings depend on both compiler and platform, a choice had to be
made. The convention is that compiler-specific information lives in the compiler
file, even if it is platform-specific. There are still if statements in the compiler
files, but they are very simple.

8.1.2 Macros defined by arch_spec.mk

SoftRelTools now defines macros for compilation. All permutations of (C++, c,
Fortran, Preprocessed Fortran) +

(pic, non-pic)+ (with depends, without depends) are defined. Additionally,
both on-the-fly and separate dependency generation are included. For details, see
arch_spec.mk.

8.1.3 Qualifiers in arch_spec.mk

Qualifiers are named sets of flags. The name is placed in the SRT_QUAL envi-
ronment variable. By default, SoftRelTools defines two sets:

default turns on debugging symbols and turns off optimization

23

maxopt turns off debugging symbols and sets the highest available generic opti-
mization

Qualifiers have to be defined by hand in the compiler and platform files. There
is no (nor can there be) any automatic way to define flags across architectures
and compilers. New qualifiers can be defined in the project-specific package by
specializing the compiler and platform files.

8.2 External libraries, etc.: arch_spec_*.mk
SoftRelTools attempts to create a standard for arch_spec_*.mk files where none
existed before. arch_spec_*.mk files should:

Follow the SoftRelTools inheritance hierarchy. This is achieved through the
include path in make and the behavior of the file itself. The file’s job is
taken care of by including the file override_arch_spec.mk.

Define a subset of the following:

1. necessary C++ include path and/or C++ macro definitions

– Modifies the variable CPPFLAGS
2. necessary library path

– Modifies the variable LDFLAGS
3. necessary libraries

– Modifies the variable LOADLIBES
4. necessary executable path
5. external dependencies

– External dependencies are automatically included unless the vari-
able NO_AUTO_EXT_DEPENDS is set.

– The variable arch_spec_depends contains the external dependen-
cies on exit.

Optionally use an environmental variable if necessary to locate external
packages.

24

– If the variable is not set, use a default value and set the variable arch_spec_warning
to an appropriate warning string.

If the package is unavailable set the variable arch_spec_error to an appro-
priate error string.

Set the variable arch_spec_warning for other messages.

The error and warning messages are printed to stdout if the variable VERBOSE is
set.

A few packages do not follow these guidelines for legacy reasons. Each one
has a comment to that effect.

9 Availability
SoftRelTools is available for anonymous cvs access at

:pserver:anonymous@srtcvs.fnal.gov:/srtcvs

Login with

cvs -
d :pserver:anonymous@srtcvs.fnal.gov:/srtcvs lo-
gin

The password is “anoncvs”. The project-specific and example packages are
available from the same location.

The SoftRelTools boot distribution is available at

<http://RunIIComputing.fnal.gov/cmgt/srt_distribution.tar.gz>.

This document is available at

<http://RunIIComputing.fnal.gov/cmgt/SoftRelTools-
Manual/SoftRelTools-Manual.html>.

It is also part of the SoftRelTools package.

25

